Given
l+m+n=0........................(1)
and
l2+m2−n2=0.....................(2)
By equation (1)
l+m+n=0
l+m=−n
−(l+m)=n
n=−(l+m) put in equation (2)
l2+m2−n2=0
l2+m2−(−(l+m))2=0
l+m−(l2+m2+2lm)=0
l2+m2−l2−m2−2lm=0
then
−2lm=0
lm=0
Either l=0 or m=0
Let us put l=0 in equation (1), and we get
l+m+n=0
0+m+n=0
m=−n
Direction ratios (l,m,n)=(0,1,−1)
Let us put m=0 in equation (1) and we get
l+m+n=0
l+0+n=0
l=−n
Direction ratios (l,m,n)=(1,0,−1)
We know that angle between of two given line
cosθ=b1.b2|b1||b2|
First solve b1.b2
Then
b1.b2=(1,0,−1)(0,1,−1)
b1.b2=0+0+1
b1.b2=1
And |b1|=√02+12+(−1)2=√2
|b2|=√02+12+(−1)2=√2
Now substituting the value in
cosθ=b1.b2|b1||b2|
cosθ=1√2√2
cosθ=12
cosθ=cosπ3
θ=π3
Hence it is required solution