The equations of the given planes are →r.(2^i+2^j−3^k)=5 and →r.(3^i−3^j+5^k)
It is known that if →n1 and →n2 are normal to the planes →r.→n1=d1 and →r.→n2=d2 then the angle between them, θ is given by
cosθ=∣∣∣→n1.→n2|→n1||→n2|∣∣∣....(1)
Here →n1=2^i+2^j−3^k and →n2=3^i−3^j+5^k
∴ →n1.→n2=(2^i+2^j−3^k)(3^i−3^j+5^k)=2.3+2.(−3)+(−3).5=−15
|→n1|=√(2)2+(2)2+(−3)2=√17
|→n2|=√(3)2+(−3)2+(5)2=√43
Substituting the value of →n1.→n2 and |→n1||→n2| in equation (1), we obtian
cosθ=∣∣∣−15√17.√43∣∣∣
⇒ cosθ=15√731
⇒θ= cos−115√731