The equations of two parabolas are y2=4ax and x2=4by.
Now, x2=4by⇒y=x24b
Substituting this value of y in y2=4ax, we get
(x24b)2=4ax
⇒x4−64ab2x=0
⇒x(x3−64ab2)=0
⇒x=0 or x3=64ab2
⇒x=0 or x=4a1/3b2/3
So, y=x24b gives y=0,y=4a2/3b1/3.
Thus, the two curves intersect at point P(4a1/3b2/3,4a2/3b1/3) other than origin O(0,0).
Now, y2=4ax and x2=4by
Differentiate above equations w.r.t. x,
⇒2ydydx=4a and 2x=4bdydx
dydx=2ay and dydx=x2b
m1=dydx=2ay=2a4a2/3b1/3=12(ab)1/3 and
m2=dydx=x2b=4a1/3b2/32b=2(ab)1/3
Let θ be the angle between the tangents to the parabolas y2=4ax and x2=4by at P. Then,
tanθ=∣∣∣m1−m21+m1m2∣∣∣
=∣∣
∣
∣
∣
∣∣12(ab)1/3−2(ab)1/31+12(ab)1/3×2(ab)1/3∣∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣∣−32(ab)1/31+(ab)2/3∣∣
∣
∣
∣
∣∣
tanθ=∣∣∣3a1/3b1/32(a2/3+b2/3)∣∣∣
⇒θ=tan−1(3(ab)1/32(a2/3+b2/3))