wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angle between the tangents drawn from the origin to the parabola, y2=4a(xa).

A
π/2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π/3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π/4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π/2
Given parabola is, y2=4a(xa)
Vertex is A(a,0) and the directrix is xa=ax=0
So the origin will lie on the directrix of the given parabola
and we know that pair of tangent drawn to the parabola from its directrix are mutually perpendicular.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Parabola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon