Find the angle between the vectors ^i−2^j+3^k and 3^i−2^j+^k
Let a=^i−2^j+3^k and b=3^i−2^j+^k
Magnitude of a, |a|=√12+(−2)2+32=√1+4+9=√14
Magnitude of b, |b|=√32+(−2)2+12=√9+4+1=√14
Now,a.b=(^i−2^j+3^k).(3^i−2^j+^k)
=1.3+(−2).(−2)+3.1=3+4+3=10
(Dot product of two vectors is equal to the sum of the products of their corresponding components)
Let θ be the required angle between a and b, then
cos θ=a.b|a||b|=10√14√14=1014=57⇒θ=cos−1(57)