Find the angle between two diameters of the ellipse x2a2+y2b2=1 Whose extremities have eccentricity angle a and β=a+π2
Let ellipse is x2a2+y2b2=1
SlopeofOP =m1=bsinaacosa=batana
SlopeofOQ=m1=bsinβacosβ=−bacota
(givenβ=a+π2)
∴tanθ=∣∣∣m1−m21+m1m2∣∣∣=∣∣ ∣ ∣ ∣∣ba(tana+cota)1−b2a2∣∣ ∣ ∣ ∣∣=∣∣∣2ab(a2−b2sin2a)∣∣∣