Find the angle made by the line x cos 30∘ + y sin 30∘ + sin 120∘ = 0 with the positive direction of the x-axis
Let the required angle be θ. Now, x cos 30∘ + y sin 30∘ + sin 120∘ = 0
⇒(√32)x+(12)y+√32=0
⇒√3x+y+√3=0
⇒y=(−√3)x+(−√3)
⇒y=mx+c, where m=−√3,c=−√3.
Now, m=−√3
⇔tanθ=−√3=−tan 60∘=tan(180∘−60∘)=tan120∘
∴θ=120∘
Hence, the given line makes an angle of 120∘ with the positive direction of the x-axis.