(a) Using angle sum property of a quadrilateral,
50∘+130∘+120∘+x=360∘
⇒300∘+x=360∘
⇒x=360−300
⇒x=60∘
(b) Using angle sum property of a quadrilateral,
90∘+60∘+70∘+x=360∘
⇒220∘+x=360∘
⇒x=360∘−220∘
⇒x=140∘
(c) First base interior angle = 180∘−70∘=110∘
Second base interior angle = 180∘−60∘=120∘
There are 5 sides, n=5
∴Angle sum of a polygon=(n−2)×180∘
=(5−2)×180∘×180∘=540∘
∴30∘+x+110∘+120∘+x=540∘
⇒260∘+2x=540∘
⇒2x=540∘−260∘
⇒x=140∘
(d) Angle sum of a polygon
=(n−2)×180∘
=(5−2)×180∘
=3×180∘
=540∘
∴x+x+x+x+x=540∘
⇒5x=540∘
⇒x=108∘
Hence, each interior angle is 108∘.