The correct option is C 30o
Let AB be the tree broken by the wind at the point C. Its top B strike the ground at the point D such that ∠CDA=θ and CB takes the position of CD i.e., CD=CB=y metres. But AC=x metres then the height of the tree=AB=(x+y)=15m,CD=y=(15−x)metres
ADC is rt. angles △ at A
CD2=AC2+AD2
⇒ (15−x)2=x2=(5√3)2=x2+75 (Pythagoras theorem)
⇒ 225+x2−30x=x2+75
⇒ 30x=150m
⇒ x=5m
AD=5√3m,AC=x−5m and CD=(15−5)m=10m
ADC is right angled △ at A then,
ACAD=tanθ
⇒ 55√3=tanθ
⇒ tanθ=1√3=tan30o
⇒ tanθ=tan30o
⇒ θ=30o
The angle of elevation made by the top of the tree with ground =θ=30o