Find the angle of intersection between the curves y2=2xπ and y=sinx at x=π2.
y2=2xπ
and y=sinx
∴sin2x=2xπ⇒x=π2sin2x,y=sin(π2sin2x)
Now y2=2xπ⇒2ydydx=2π⇒dydx=1πy
And y=sinx⇒dydx=cosx
tanθ=∣∣
∣
∣
∣∣1πy−cosx1−1πycosx∣∣
∣
∣
∣∣=∣∣
∣
∣
∣
∣
∣
∣∣1π(π2sin2x)−cos(π2sin2x)1+1πsin(π2sin1x)cos(π2sin2x)∣∣
∣
∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣∣1−πcos(π2sin2x)sin(π2sin2x)1+πcos(π2sin2x)sin(π2cos2x)∣∣
∣
∣
∣∣
⇒θ=cos−1π