The correct option is
A π4x2+y2=a2√2........(1),
x2−y2=a2..............(2)
⎧⎪⎨⎪⎩Forpointsofintersection2x2=a2(√2+1)2y2=a2(√2−1)⎫⎪⎬⎪⎭...(A)Now from (A),4x2y2=a4.1
∴2xy=a2. Also y2−x2=−a2.....................(B)
Differentiating eq(1) and (2)
2x+2y(dydx)I=0,∴(dydx)I=−xy=m1
2x−2y(dydx)II=0,∴(dydx)II=xy=m2.
If θ be the angle between the curves, then
tanθ=m1−m21+m1m2=−2(x/y)1−x2/y3=−2xyy2−x2.
From B
Hence tanθ=−a2−a2=1∴θ=π4.