CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angle of intersection of the following curves:

(i) y2 = x and x2 = y [NCERT EXEMPLAR]
(ii) y = x2 and x2 + y2 = 20
(iii) 2y2 = x3 and y2 = 32x
(iv) x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0
(v) x2a2+y2b2=1 and x2 + y2 = ab
(vi) x2 + 4y2 = 8 and x2 − 2y2 = 2
(vii) x2 = 27y and y2 = 8x
(viii) x2 + y2 = 2x and y2 = x
(ix) y = 4 x2 and y = x2 [NCERT EXEMPLAR]

Open in App
Solution

i Given curves are,y2=x ... 1x2=y ... 2From these two equations, we getx22=xx4-x=0x x3-1=0x=0 or x = 1Substituting the values of x in 2 we get,y=0 or y=1 x, y = 0, 0 or 1, 1Differenntiating (1) w.r.t. x,2y dydx=1dydx=12y ...3Differenntiating (2) w.r.t. x,2x = dydx ...4Case -1: x, y = 0, 0The tangent to curve is parallel to x-axis.Hence, the angle between the tangents to two curve at 0, 0 is a right angle.θ=π2Case -2: x, y = 1, 1From 3 we have, m1=12From 4 we have, m2=2 1=2Now,tan θ=m1-m21+m1m2=12-21+12×2=34θ=tan-1 34

ii Given curves are,y=x2 ... 1x2+y2=20 ... 2From these two equations we get y+y2=20y2+y-20=0y+5y-4=0y=-5 or y=4Substituting the values of y in 1 we get,x2=-5 or x2=4 x=±2 and x2 = -5 has no real solutionSo, x, y=2, 4 or -2, 4Differenntiating (1) w.r.t. x,dydx=2x ...3Differenntiating (2) w.r.t. x,2x +2y dydx=0dydx=-xy ...4Case -1: x, y = 2, 4From 3 we have, m1=22=4From 4 we have, m2=-24=-12Now, tan θ=m1-m21+m1m2=4+121+4 -12=92θ=tan-1 92Case -2: x, y = -2, 4From 3 we have, m1=2-2=-4From 4 we have, m2=24=12Now, tan θ=m1-m21+m1m2=-4-121-4 12=92θ=tan-1 92

iii Given curves are,2y2=x3 ... 1y2=32x ... 2 From these two equations we get232x=x364x=x3xx2-64=0x=0, 8 , -8Substituting the value of x in 2 we get, y1=0, 16, -16x1, y1 = 0, 0, 8, 16 or 8, -16 Differentiating (1) w.r.t. x,4y dydx=3x2dydx=3x24y ...3Differenntiating (2) w.r.t. x,2ydydx=32dydx=16y ...4Case - 1: x, y = 0, 0From 3 we have, m1=00 We cannot determine θ in this case.Case - 2: x, y = 8, 16From 3 we have, m1=19264=3From 4 we have, m2=1616=1Now,tan θ=m1-m21+m1m2=3-11+3=24=12θ=tan-1 12Case- 3: x1, y1 = 8, -16From 3 we have, m1=192-64=-3From 4 we have, m2=16-16=-1Now, tan θ=m1-m21+m1m2=-3+11+3=24=12θ=tan-1 12

iv Given curves are,x2+y2-4x-1=0 ... 1x2+y2-2y-9=0 ... 2From (3) we getx2+y2=4x+1Substituting this in (2),4x+1-2y-9=04x-2y=82x-y=4y=2x-4 ... 3Substituting this in (1),x2+2x-42-4x-1=0x2+4x2+16-16x-4x-1=05x2-20x+15=0x2-4x+3=0x-3x-1=0x=3 or x=1Substituting the values of x in 3, we get,y=2 or y=-2 x, y = 3, 2, 1, -2Differentiating (1) w.r.t. x,2x+2y dydx-4=0dydx=4-2x2y=2-xy ... 4Differenntiating (2) w.r.t. x,2x+2y dydx-2dydx=0dydx2y-2=-2xdydx=2x2-2y=x1-y ... 5Case - 1: x, y = 3, 2From 4, we get, m1=2-32=-12From 5, we get, m2=31-2=-3Now,tan θ=m1-m21+m1m2=-12+31+32=1θ=tan-1 1=π4Case - 2: x, y = 1, - 2From 4, we get, m1=2-1-2=-12From 5, we get, m2=11+2=13Now,tan θ=m1-m21+m1m2=-12-131-16=1θ=tan-1 1=π4

v Given curves are,x2a2+y2b2=1 ... 1x2+y2=ab ... 2Multiplying (2) by 1a2,x2a2+y2a2=ba ... 3Subtracting (1) from (3), we gety2a2- y2b2=ba-1y2b2-a2a2b2=b-aay2=b-aa×a2b2b+ab-a=ab2b+ay=±bab+aSubstituting this in (3),x2a2+ab2b+aa2=baa+bx2+ab2=ab2+a2bx2=a2ba+bx=±aba+bx, y = ±aba+b, ±bab+aNow, x, y = aba+b, bab+aDifferentiating (1) w.r.t. x, we get,2xa2+2yb2dydx=0dydx=-xb2a2ym1=-ab2ba+ba2bab+a =-bbaaDifferenntiating (2) w.r.t. x, we get,2x+2ydydx=0dydx=-xym2=-aba+b bab+a=-abbaWe have,tan θ=m1-m21+m1m2=-bbaa+abba1+bbaaabba=-b2ab+a2aba2ba2b+ab2a2b=aba+ba-ba2b×a2baba+b=a-babθ=tan-1 a-babSimilarly, we can prove that θ=tan-1 a-bab for all possibilities of x, y

vi Given curves are,x2+4y2=8 ... 1x2-2y2=2 ... 2From (1) and (2) we get 6y2=6y=1 or y1=-1Substituting the values of y in 1x=2, -2 or x=2, -2 So, x, y=2, 1, 2, -1, -2, 1, -2, -1Differenntiating (1) w.r.t. x,2x+8y dydx=0dydx=-x4y ...3Differenntiating (2) w.r.t. x,2x-4y dydx=0dydx=x2y ...4 Case -1: x, y = 2, 1 From 3, we get, m1=-12From 4, we get, m2=1We have,tan θ=m1-m21+m1m2=-12-11-12=3θ=tan-1 3Case -2: x, y = 2, -1 From 3, we get, m1=12From 4, we get, m2=-1We have,tan θ=m1-m21+m1m2=12+11-12=3θ=tan-1 3Case -3: x, y= -2, 1 From 3, we get, m1=12From 4, we get, m2=-1We have,tan θ=m1-m21+m1m2=12+11-12=3θ=tan-1 3Case -4: x, y= -2, -1 From 3, we get, m1=-12From 4, we get, m2=1We have,tan θ=m1-m21+m1m2=-12-11-12=3θ=tan-1 3

vii Given curves are,x2=27y ... 1y2=8x ... 2From (2) we getx=y28 Substituting this in (1),y282=27yy4=1728yy y3-123=0y=0 or y=12Substituting the values of y in (2), we get, x=0 or x=18x, y = 0, 0, 18, 12Differentiating (1) w.r.t. x,2x=27dydxdydx=2x27 ... 3Differenntiating (2) w.r.t. x,2y dydx=8dydx=4y ... 4Case - 1: x, y = 0, 0From 4 we have, m2 is undefined We cannot find θCase - 2: x, y = 18, 12From 3 we have, m1=3627=43From 4 we have, m2=412=13Now, tan θ=m1-m21+m1m2=43-131+49=913θ=tan-1 913

viii Given curves are,x2+y2=2x ... 1y2=x ... 2From these two equations we get x2+x=2xx2-x=0x x-1=0x=0 or x=1Substituting the values of x in 2 we get,y=0 or y=±1 x,y =0, 0, 1, 1, 1, -1Differenntiating (1) w.r.t. x,we get,2x+2ydydx=2dydx=1-xy ... 3Differenntiating (2) w.r.t. x,we get,2y dydx=1dydx=12y ... 4Case -1: x, y = 0, 0From 3 we get, m1 is undefined. We can not find θCase -2: Let x, y = 1, 1From 3 we get, m1=0From 4 we get, m2=12Now, tan θ=m1-m21+m1m2=0-121+0=12θ=tan-112Case -3: Let x, y = 1, -1From 3 we get, m1=0From 4 we get, m2=-12Now, tan θ=m1-m21+m1m2=0+121=12θ=tan-112

ix Given curves are,y=4-x2 .....1y=x2 .....2From 1 and (2), we get4-x2=x2 2x2=4x2=2x=±2Substituting the values of x in (2), we get, y=2x, y=2,2, -2,2Differentiating (1) w.r.t. x,dydx=-2x .....3Differentiating (2) w.r.t. x,dydx=2x .....4Case 1: x, y=2, 2From 3, we have, m1=-22From 4 we have, m2=22Now, tanθ=m1-m21+m1m2=-22-221-8=427θ=tan-1427Case 1: x, y=-2, 2From 3, we have, m1=22From 4 we have, m2=-22Now, tanθ=m1-m21+m1m2=22+221-8=427θ=tan-1 427

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon