Find the angle x from the figure if ABCD is a parallelogram in which ∠A:∠B=1:4. Also, ΔDEF is an isosceles triangle with DE = DF.
18°
As per the question,
∠A : ∠B = 1 : 4.
⇒∠A∠B = 14
⇒ ∠B = 4∠A ...(1)
We know that, BC || AD and AB is the transversal.
∠A + ∠B = 180° ( Co-interior angles)
From (1), ∠A + 4∠A = 180°
⇒ 5∠A = 180°
⇒ ∠A = 36°
∠B = 4 × 36° = 144° ( from(i) )
In a parallelogram, opposite angles are equal.
So, ∠B = ∠D
∠D = ∠EDF = 144° (Vertically opposite angles)
△DEF is an isosceles triangle and DE = DF (Given)
So, ∠E = ∠F (Base angles of an isoceles triangle are equal)
∠EDF + ∠E + ∠F = 180° (Angle sum property of a triangle).
⇒ 144° + x + x = 180°
⇒ 2x = 180° - 144° = 36°
⇒ x = 36°2 = 18°.
Hence, x = 18°.