Find the angle x from the figure if ABCD is a parallelogram in which ∠A:∠B=1:4. Also, ΔDEF is an isosceles triangle with DE = DF.
18°
As given in question, ∠A∠B = 14
⇒ ∠B = 4∠A------------(1)
Also, ∠A + ∠B = 180° (Properties of parallelogram)
From equation (1),∠A + 4∠A = 180°
⇒ 5∠A = 180°
⇒ ∠A = 36°
⇒ ∠B = 4 × 36° = 144°
In a parallelogram, opposite angles are equal.
So, ∠B = ∠D
∠D = ∠EDF = 144° (Vertically opposite angles)
ΔDEF is an isosceles triangle.
DE = DF (Given in question)
So, ∠E = ∠F
Also, ∠EDF + ∠E + ∠F = 180°
⇒ 144° + x + x = 180°
⇒ 2x = 180° - 144°
⇒ x = 36°2 = 18°