Let the slopes of the given lines be m1 and m2 respectively.
Now, √3x+y=1⇒y=−√3x+1
and x+√3y=1⇒y=−1√3x+1√3
∴m1=−√3m2=−1√3
tanθ = ∣∣m2−m11+m1m2∣∣ = ∣∣ ∣∣−1√3+√3{1+(−√3)×(−1√3)}∣∣ ∣∣
= ∣∣2√3×12∣∣ = ∣∣1√3∣∣
= 1√3 ⇒θ=30∘(180∘−θ)=(180∘−30∘)=150∘.
Hence, the angles between the given lines are 30∘ and 150∘