Find the angles between the lines √3x+y=1 and x+√3y=1
We have √3x + y = 1
⇒ y=−√3x+1
∴ m1=−√3
Also x+√3y=1
⇒ √3y=−x+1
⇒ y=−13x+1√3
∴ m2=−1√3
Let θ be the angle between the lines. Then
tan θ=∣∣ ∣∣−√3+1√31+(−√3)(−1√3)∣∣ ∣∣
=∣∣ ∣∣−3+1√31+1∣∣ ∣∣=∣∣∣−2√3×12∣∣∣
=∣∣∣−1√3∣∣∣=1√3
tan θ=tan 30∘ and tan (180∘−30∘)
⇒ θ=30∘ and 150∘