wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angles between the lines whose direction cosines are given by the equations.
l+m+n=0
l2+m2+n2=0

Open in App
Solution

According to question,
l+m+n=0,l2+m2+n2=0
so,
Angle between two lines is cosθ=¯¯¯¯¯b1.¯¯b2|b1||b2|
cosθ=¯¯¯¯¯b1.¯¯b2|b1||b2|step1:l+m+n=0(1)l+m=nn=(l+m)andl2+m2+n2=0(2)l2+m2+((l+m))2=0l2+m2+((l2+m2+2lm))=0l2+m2l2m22lm=0lm=0,i.eeitherl=0,m=0letusputm=0inequ(1)

ifm=0thenl=n(drsisproportional)directionratio(l,m,n)=(1,0,1)(b1putl=0,thenwegetm=ndrs(l,m,n).(0,1,1)(b2steps2:b1b2=(1,0,1).(0,1,1)=1|b1|=1+01=2,|b2|=2steps3:cosθ=¯¯¯¯¯b1¯¯¯¯¯b2|b1||b2|=122=12θ=π3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Direction Cosines and Direction Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon