According to question,
l+m+n=0,l2+m2+n2=0
so,
Angle between two lines is cosθ=¯¯¯¯¯b1.¯¯b2|b1||b2|
cosθ=¯¯¯¯¯b1.¯¯b2|b1||b2|step1:l+m+n=0−−−−(1)l+m=−nn=−(l+m)andl2+m2+n2=0−−−−−−−(2)l2+m2+(−(l+m))2=0l2+m2+(−(l2+m2+2lm))=0l2+m2−l2−m2−2lm=0∴lm=0,i.eeitherl=0,m=0letusputm=0inequ−−−−(1)
ifm=0thenl=−n(dr′sisproportional)directionratio(l,m,n)=(1,0,−1)−−−−(b1putl=0,thenwegetm=−ndr′s(l,m,n).(0,1,−1)−−−(b2steps2:b1b2=(1,0,−1).(0,1,−1)=1|b1|=√1+01=√2,|b2|=√2steps3:cosθ=¯¯¯¯¯b1¯¯¯¯¯b2|b1||b2|=1√2√2=12∴θ=π3