Consider the given equations,
x+√3y=1..(1), √3x+y=1 ......(2)
from the equation 1st,
y=−1√3x+1√3
Compare with, y=m1x+C
m1=−1√3
From equation 2nd ,
y=−√3x+1
Compare with y=m2x+C
m2=−√3
Now,let the angle between line 1st and 2nd =θ,
Using the formula,tanθ=m2−m11+m1m2
tanθ=−√3−(−1√3)1+(−√3)×(−1√3)=−√3×√3+11+1
tanθ=−3+12=−1
tanθ=−1
tanθ=−tanπ4
tanθ=tan(π−π4)
tanθ=tan3π4
θ=3π4
Hence, this is the answer.