Find the angles between the planes whose vector equation are r.(2^i+2^j−3^k)=5 and r.(3^i−3^j+5^k)=3
Given planes are r.(2^i+2^j−3^k)=5 and r.(3^i−3^j+5^k)=3
It is known that if n1 and n2 are normal to the plane, r.n1=d1 and r.n2=d2, then the angle between them is given by
cosθ=∣∣n1.n2|n1| |n2|∣∣
Here, n1=2^i+2^j−3^k and n2=3^i−3^j+5^kn1.n2=(2^i+2^j−3^k).(3^i−3^j+5^k) 2. 3+2.(−3)+(−3).5=6−6−15=−15|n1| =√(2)2+(2)2+(−3)2=√4+4+9=√17|n2| =√(3)2+(−3)2+(5)2=√9+9+25=√43
Substituting the value of n1.n2,|n1| and |n2| in Eq. (i), we obtain
cosθ=∣∣∣−15√17√43∣∣∣⇒cosθ=15√731⇒θ=cos−1(15√731)