Find the angles marked with a question mark shown in the figure.
In parallelogram ABCD,
CE⊥AB and CF⊥AD∠BCE=40∘
In ΔBCE,
∠BCE+∠CEB+∠EBC=180∘
(Sum of angles of a triangle)
⇒40∘+90∘+∠EBC=180∘⇒130∘+∠EBC=180∘⇒∠EBC=180∘−130∘=50∘ or ∠B=50∘
But ∠D=∠B (Opposite angles)
∴∠D=50∘ OR ∠ADC=50∘
Similarly in ΔDCF.
∠DCF+∠CFD+∠FDC=180∘⇒DCF+90∘+50∘=180∘⇒∠DCF+14∘=180∘⇒∠DCF=180∘−140∘=40∘
But ∠C+∠B=180∘
(Sum of adjacent angles)
⇒∠BCE+∠ECF+∠DCF+∠B=180∘⇒∠ECF+40∘+50∘=180∘⇒40∘+∠ECF+40∘+50∘=180∘⇒∠ECF+130∘=180∘⇒∠ECF=180∘−130∘=50∘∴∠ECF=50∘