wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angles of a cyclic quadrilateral ABCD in which A=(4x+20)°,B=(3x-5)°,C=(4y)° and D=(7y+5)°.

Open in App
Solution

Given:
In a cyclic quadrilateral ABCD, we have:
A=4x+20°
B=3x-5°
C=4y°
D=7y+5°
A+C=180° and B+D=180° [Since ABCD is a cyclic quadrilateral]
Now, A+C=4x+20°+4y°=180°
⇒ 4x + 4y + 20 = 180
⇒ 4x + 4y = 180 − 20 = 160
⇒ x + y = 40 ....(i)
Also, B+D=3x-5°+7y+5°=180°
⇒ 3x + 7y = 180 ....(ii)
On multiplying (i) by 3, we get:
3x + 3y = 120 ....(iii)
On subtracting (iii) from (ii), we get:
4y = 60 ⇒ y = 15
On substituting y = 15 in (1), we get:
x + 15 = 40 ⇒ x = (40 − 15) = 25
Therefore, we have:
A=4x+20°=4×25+20°=120°
B=3x-5°=3×25-5°=70°
C=4y°=4×15°=60°
D=7y+5°=7×15+5°=105+5°=110°

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Duplicate Ratio
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon