The correct option is A 259.65 cm2
The trapezium can be broken into a parallelogram and a triangle
The sides of the triangle are 10 cm.16 cm and (32−20) cm i.e 10 cm,16 cm and 12 cm
First calculate the area of the triangle with the help of Heron's Formula
a=10 cm,b=16 cm,c=12 cm
S=(a+b+c)2=(10+16+12)2=19 cm
Hence area A=√(19(19−10)(19−16)(19−12))=59.93
Taking the base on the parallel sides i.e 12 cm
Height of the triangle, H=2Ac=2×59.9312=9.98 cm
Area of the parallelogram =base×height=209.98=199.6 cm2
Total area of the trapezium =199.6+59.93=259.53 cm2