Let x=5 and Δx=0.001
Now, Δy=f(x+Δx)−f(x)
∴f(x+Δx)=f(x)+Δy
≈f(x)+f′(x)⋅Δx (as dx=Δx)
∴f(5.001)≈(x3−7x2+15)+(3x2−14x)Δx
=[(5)3−7(5)2+15]+[3(5)2−14(5)](0.001)
=(125+175+15)+(75−70)(0.001)
=−35+(5)(0.001)=−35+0.005=−34.995
Hence, the approximate value of f(5.001) is 34.995