Find the area between the curves y=x2−2x−3, x-axis and the lines x=−3 and x=5.
Open in App
Solution
The given curve y=x2−2x−3 The curve meet x axis Put y=0 ⇒x2−2x−3=0 ⇒(x−3)(x+1)=0 ⇒x=3,−1 The curve lies above the x-axis between x=−3 and x=−1 and x=3 and x=5. The curve lies below x-axis between x=−1 and x=3. The required area =∫baydx+∫dc−ydx+∫feydx =∫−1−3(x2−2x−3)dx−∫3−1(x2−2x−3)dx+∫53(x2−2x−3)dx =[x33−x2−3x]−1−3−[x33−x2−3x]3−1+[x33−x2−3x]53 =−13−1+3−(−273−9+9)−(+273−9−9)+(−13−1+3)+1253−25−15−(−273−9−9) =(−13+2)−(−9)−(−9)+(−13+2)+(1253−40)−(−a) =−13+2+9+9−13+2+1253−40+9 =(−13−13+1253)+(−9) =−1−1+1253−9=1233−9 =41−9=32 square units.