4y=|4−x2| , x2+y2=25 , x=0
Intersection points
⇒ x2+y2=25 and 4y=|x2−4|
Solving
y=3 , x=4
As it is with x=0 we need to find area DABCD
A=(0,1) , B=(2,0) , C=(4,3) , D=(0,5) , E=(−4,3) , F=(−2,0)
DABCD=∫40√25−x2−14|4−x2|dx
=[x√25−x22+25sin−1c/52]40−14∫20[4−x2]dx−14∫42−[4−x2]dx
⇒ 42×3+25sin−1(4/5)2−14[4x−x33]20+14[4x−x33]42
⇒ 6+25sin−1(4/5)2−16
⇒ 25sin−1(4/3)2−10