x2+y2=1 (x−1)2+(y−0)2=1centre (0,0) centre (1,0)
radius =1 radius=1
x2+y2=1⇒y2=1−x2
∴(x−1)2+(1−x2)=1
⇒x2+1−2x+1−X2=1
x=12
If x=12,then y=±√32
Hence points of intersection are (12,√32),(12,−√32)
The curve y=√1−(x−1)2 moves from 0 to 12
and y=√1−x2 moves from 12 to 1 (x−0.005)
Area =[2∫120√1−(x−1)2dx+∫112√1−x2dx]
2[12(x−1)√1−(x−1)2+12sin−1(x−11)]120
+[x2√1−x2+12sin−1sin−1(x)]112
On applying limits , we get
Area=[−√34−π6+π2+π2−√34−π6]=[2π3−√32]