Equation of the circle is x2+y2=4 where radiusr=2units
Let AB represent the line x=√3y
Point C is the intersectio of line and circle.
Put x=√3y in x2+y2=4 we get
3y2+y2=4 or 4y2=4 or y=±1
When y=1⇒x=√3
When y=−1⇒x=−√3
As point C is in first quadrant C is (√3,1)
Now,area of △OAC=Area△OCX+Area△XCA
=∫√30y1dx+∫2√3y2dx
Put x=√3y⇒y=x√3 So,y1=x√3
x2+y2=4⇒y2=4−x2 or y2=√4−x2
∴ Area of △OAC=∫√30x√3dx+∫2√3√4−x2dx .......(1)
Let I1=∫√30x√3dx
=1√3[x22]√30
=12√3(3−0)
=√32
Now, I2=∫2√3√4−x2dx
=[x2√4−x2+42sin−1x2]2√3 since ∫√a2−x2dx=12x√a2−x2+a22sin−1xa+c
=12(2)√4−4−12√3√4−3+42sin−122−42sin−1√32
=−√32+2[sin−1(1)−sin−1(√32)]
=−√32+2[π2−π3]
=−√32+π3
Putting the value of I1 and I2 in (1)
Area of △OAC=√32−−√32+π3=π3