The correct option is A 12(1−e−1/2)
y=xe−x2
dydx=e−x2−2x2e−x2
dydx=0
⇒e−x2(1−2x2)=0
⇒x=±1√2
f(−1√2)=−1√2(e−12).
f(1√2)=1√2(e−12).
So, we get a maximum at x=1√2
Thus, the required area
A=∫1√20y dx
=∫1√20xe−x2 dx
=12∫1√202xe−x2 dx
Let x2=t ⇒2x dx=dt
At x=0,t=0 and x=1√2,t=12.
Substituting in the above expression, we get
A=12∫120e−t.dt
=12[e−t]012
=12(1−e−12) sq units.