Given,
x2+y2≤2ax
x2+y2+a2−2ax≤0+a2
(x−a)2+y2≤a2........(1)
Which is region inside the circle and centre as (a,0)
Now ,
y2≥ax
which is region inside the parabola ……..(2)
x,y≥0 Region lies in the 1st quadrant ……….(3)
Let the required area is A ,
A=∫a0√a2−(x−a)2−√axdx
A=∫a0√a2−(x−a)2dx−∫a0x12dx
Since, ∫√a2−x2dx=x2√a2−x2+a22sin−1x2
=[(x−a)2∫√a2−(x−a)2+a22sin−1x−a2]a0−√a⎡⎢ ⎢ ⎢ ⎢⎣x3232⎤⎥ ⎥ ⎥ ⎥⎦a0
=⎡⎢ ⎢⎣(a−a)√a2−(a−a)22+a22sin−1a−a2−(0−a)√a2−(0−a)22−a22sin−1(0−a2)⎤⎥ ⎥⎦−√a23a32
=0+0−0−a22sin−1(1)−23a2
=a2[π4−23] sq unit