Find the area bounded by the curve y = sin x between x = 0 and x=2π.
The graph of y = sin x can be drawn as
Required area = Area OABO + Area BCDB
=∫π0|sin x|dx|+∫2ππ|sin x|dx=∫π0|sin x|dx|+∫2ππ|−sin x|dx(∵sinx≥0forxϵ[0,π]andsinx≤0forxϵ[π,2π])=[−cos x]n0+[cos x]2ππ=−cos π+cos 0+cos 2π−cos π=−(−1)+1+1−(−1)=4 sq unit