wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area bounded by y=x|sinx| and xaxis between x=0,x=2π.

Open in App
Solution

We have,
y=x|sinx|
we know that
0<x<2π,sinx>0
π<x<2π,sinx<0
Therefore,
Area=π0xIsinIIxdx2ππxIsinIIxdx
=[x(cosx)]π0π01(cosx)dx[[x(cosx)]2ππ2ππ1(cos3x)dx]
=[πcosπ0]+(sinx)π0[[2πcos2ππcosπ]+(sinx)2ππ]
=[πx1]+sinπsin0[[2π×1+πx1]+sin2πsinπ]
=π+00+2π+π+00
=2x.

1191543_1155630_ans_f9d832120dca485e9318b1f6719d94ee.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon