4y=3x2 and 2y=3x+12
4y=3x2
⇒2y=32x2
⇒3x+12=32x2
⇒6x+24=3x2
⇒2x+8=x2
⇒x2−2x−8=0
x=2±√4+322=2±62
∴x=4,−2
and y=12,3
∴ the line 2y=3x+12 intersects the parabola 4y=3x2 at point (−2,3) and (4,12)
∴ the area enclosed between the parabola and line is shown in the figure as the shaded portion.
Area=∫ba[f(x)−g(x)]dx
a=−2 b=4 f(x)=3x+122g(x)=3x24
∴A=∫4−2[[3x+122]−(3x24)]dx=∫4−23x+122dx−∫4−23x24dx
On integrating we get
A=12[3x22+12x4]42−34[x33]4−2
=12[24+48−6+24]−14[64+8]
=45−18=27 sq units.