Weknowthatthediagonalofaparallelogram(∥gm)dividesitintotwocongruenttriangles.SoAreaof∥gmABCD=2×Areaof△BCD.AccordingtoHeron′sformulathearea(A)oftrianglewithsidesa,b&cisgivenasA=2√[s(s−a)(s−b)(s−c)]where2s=(a+b+c).Herea=12,b=17,c=25,s=(12+17+25)2=542=27Areaof∥gmABCD=2×2√[27×(27−12)(27−17)(27−25)]=2×2√(27×15×10×2)=2×2√(3×3×3×3×5×5×2×2)=2×2√[(3×3×5×2)(3×3×5×2)]=2×(3×3×5×2)=2×90=180Areaof∥gm=base×heightHeightofaltitudefromvertexAonsideCDoftheof∥gm=areaof∥gmABCDbaseCD=18012=15cm