Question 5
Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side DC.
Area of parallelogram ABCD = 2(Area of ΔBCD)
Now, the sides of a ΔBCD are a = 12cm, b = 17cm and c = 25cm.
Semi-perimeter , s=12+17+252=542=27
∴ Area of ΔBCD=√s(s−a)(s−b)(s−c) [by Heron’s formula]
=√27(27−12)(27−17)(27−25)
=√27×15×10×2
=√9×3×3×5×5×2×2
=3×3×5×2=90cm2
Area of parallelogram ABCD = 2 × 90
= 180 cm2
Let 'h' be the altitude of the parallelogram.
Area of parallelogram ABCD = Base × Altitude
⇒ 180=DC×h
⇒ 180=12×h
∴ h=18012=15 cm
Hence, the area of parallelogram is 180 cm2 and the length of altitude is 15cm.