Area of parallelogram ABCD=2(AreaofΔBCD)
Now, the sides of a ΔBCD are:
a = 12 cm, b = 17 cm and c = 25 cm.
Semi-perimeter, s=12+17+252=27cm
therefore, Area of ΔBCD=√s(s−a)(s−b)(s−c) [by Heron’s formula]
=√27(27−12)(27−17)(27−25)
=√27×15×10×2
=90cm2
Area of parallelogram ABCD=2×90=180cm2
Let 'h' be the altitude of the parallelogram.
Area of parallelogram ABCD = Base × Altitude
180 = DC × h
180 = 12 × h
h=18012=15 cm
Hence, the area of parallelogram is 180 cm2 and the length of altitude is 15 cm