The correct option is D 180 cm2, 15 cm
Area of parallelogram ABCD = 2(Area of ΔBCD)
Now, the sides of a ΔBCD are:
a = 12 cm, b = 17 cm and c = 25 cm.
Semi-perimeter , s=12+17+252=542=27 cm
∴Area of ΔBCD=√s(s−a)(s−b)(s−c) [by Heron’s formula]
=√27(27−12)(27−17)(27−25)
=√27×15×10×2
=√9×3×3×5×5×2×2
=3×3×5×2=90 cm2
Area of parallelogram ABCD = 2 × 90 = 180 cm2
Let 'h' be the altitude of the parallelogram.
Area of parallelogram ABCD = Base × Altitude
⇒ 180=DC×h
⇒ 180=12×h
∴ h=18012=15 cm
Hence, the area of parallelogram is 180 cm2 and the length of altitude is 15 cm.