Find the area of a quadrilateral ABCD in which AB=3 cm,BC=4 cm,CD=4 cm,DA=5 cm and AC=5 cm
For ΔABC, we have
AC2=AB2+BC2
(5)2=(3)2+(4)2
Therefore,ΔABC is a right triangle, right-angled at point B
Area of ΔABC=12×AB×BC=12×3×4=6cm2
For ΔADC, Perimeter =2s=AC+CD+DA=(5+4+5) cm=14 cm
s=7 cm
By Heron's formula, Area of triangle =√s(s−a)(s−b)(s−c)
Area of ΔADC=√7(7−5)(7−5)(7−4) cm2
=(√7×2×2×3)cm2
=2√21 cm2
=9.166 cm2
Area of ABCD= Area of ΔABC + Area of ΔACD
=(6+9.166) cm2
=15.166 cm2
=15.2 cm2 (approx)