Find the area of a quadrilateral ABCD in which AB = 3cm, BC = 4cm, CD = 4cm, DA = 5cm and AC = 5cm
In the quadrilateral, AC is the diagonal which divides the figure into two triangles
Now in Δ ABC, AB = 3 cm, BC = 4cm, AC = 5cm
∴s=a+b+c2=3+4+52=122=6
∴ Area ofΔABC=√s(s−a)(s−b)(s−c)
v=√6(6−3)(6−4)(6−5)
=√6×3×2×1=√36=6cm2
In Δ ADC, AC= 5 cm, AD= 5cm, CD=4cm
∴s=a+b+c2=5+5+42=142=7
∴Area of ΔADC=√s(s−a)(s−b)(s−c)
=√7(7−5)(7−5)(7−4)=√7×2×2×3
=2√21=2×4.58=9.16cm2
∴ Total area of quadrilateral ABCD
= 6+9.16cm2=15.16cm2