Find the area of a shaded region in the given figure, where a circular arc of radius 7 cm has been drawn with vertex A of an equilateral triangle ABC of side 14 cm as centre. (Use π=227 and √3=1.73).
Open in App
Solution
⇒ Here, Radius of circle r=7cm
⇒ Area of circle =πr2=227×(7)2=154cm2
⇒ Side of equilateral triangle is 14cm.
⇒ Area of equilateral triangle =√34×(side)2
⇒ Area of equilateral triangle =√34×(14)2
⇒ Area of equilateral triangle =1.734×196=84.87cm2
⇒∠A=60o [ Angle of equilateral triangle ]
∴θ=60o
⇒ Area of sector =θ360o×πr2
⇒ Area of sector =60o360o×227×(7)2
∴Area of sector =25.66cm2
⇒ Area of shaded region = (Area of circle + Area of equilateral triangle ) - 2×Area of sector
⇒Area of shaded region =(154+84.87)−51.32=187.55cm2