First, we will find out the co-ordinates of the triangle’s three vertices. These occur at the points that a pair of lines intersect.
Vertex1:Thisiswherethelinesy=xandy=2xintersect.Thishappenswhenx=2x⇒x=0⇒y=0.Thusthepointis(0,0).
Vertex2:Thisiswherethelinesy=xandy=3x+4intersect.Thishappenswhenx=3x+4⇒x=−2⇒y=−2.Thusthepointis(-2,-2).
Vertex3:Thisiswherethelinesy=2xandy=3x+4intersect.Thishappenswhen2x=3x+4⇒x=−4⇒y=−8.Thusthepointis(−4,−8).
The circumcentre of a triangle is the point (a,b) such that a circle of radius r centre on (a,b) passes through the three vertices.
Every point on this circle satisfies the generic equation:(x−a)2+(y−b)2=r2.Expanding this equation,we havex2−2ax+a2+y2−2by+b2=r2.
At vertex1,x=0 and y=0,thus we have EquationA:a2+b2=r2
At vertex2,x=−2andy=−2,thus we have Equation B:4+4a+a2+4+4b+b2=r2
Atvertex3,x=−4andy=−8,thuswehaveEquationC:16+8a+a2+64+16b+b2=r2
Subtracting Equation A from Equation B,we have Equation D:8+4a+4b=0
Subtracting Equation B from Equation C,we have Equation E:72+4a+12b=0
Subtracting Equation D from Equation E,we have Equation F:64+8b=0⇒b=−8
Substituting this into Equation D:8+4a−32=0⇒a=6
So,thecircumcentreis(6,−8).
As a bonus,using Equation A,the radius of the circle is 10.