Find the area of hexagon ABCDEF in which BL⊥AD, CM⊥AD, EN⊥AD and FP⊥AD such that AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm and CM = 6 cm.
Open in App
Solution
The given details are, BL⊥AD, CM⊥AD, EN⊥AD and FP⊥AD $AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm , CM=6cm. AL=AP+PL=6+2=8cm PN=PL+LN=2+8=10cm LM=LN+NM=8+2=10cm ND=NM+MD=2+3=5cm By Using the formula, Area (hex. ABCDEF) =area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB) Area of triangle =1/2×base×height Area of trapezium =1/2×(sumofparallelsides)×height ∴lets calculate, Area(△APF)=1/2(AP)×(FP)=1/2×6×8=24cm2 Area(△DEN)=1/2(ND)×(EN)=1/2×5×12=30cm2 Area(△ABL)=1/2(AL)×(BL)=1/2×8×8=32cm2 Area(△CMD)=1/2(MD)×(CM)=1/2×3×6=9cm2 Area(Trap.DMNE)=1/2×(FP+EN)×ON=1/2×(18+12)×1=100cm2 Area(Trap.DMNE)=1/2×(BL+CM)×LM=1/2×(BL+CM)×LM=1/2×(8+6)×10=70cm2 ∴Area(her.ABCDEF)=area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB) =24+30+32+9+100+70 =265cm2