wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of hexagon ABCDEF in which BLAD, CMAD, ENAD and FPAD such that AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm and CM = 6 cm.
1312970_e3daf6db2b2941efa23fedfb53dfbc2d.png

Open in App
Solution

The given details are,
BLAD, CMAD, ENAD and FPAD
$AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm ,
CM=6cm.
AL=AP+PL=6+2=8cm
PN=PL+LN=2+8=10cm
LM=LN+NM=8+2=10cm
ND=NM+MD=2+3=5cm
By Using the formula,
Area (hex. ABCDEF) =area(APF)+area(DEN)+area(ABL)+area(CMD)+area(Trap.PNEF)+area(Trap.LMCB)
Area of triangle =1/2×base×height
Area of trapezium =1/2×(sum of parallel sides)×height
lets calculate,
Area(APF)=1/2(AP)×(FP)=1/2×6×8=24cm2
Area(DEN)=1/2(ND)×(EN)=1/2×5×12=30cm2
Area(ABL)=1/2(AL)×(BL)=1/2×8×8=32cm2
Area(CMD)=1/2(MD)×(CM)=1/2×3×6=9cm2
Area(Trap.DMNE)=1/2×(FP+EN)×ON=1/2×(18+12)×1=100cm2
Area(Trap.DMNE)=1/2×(BL+CM)×LM=1/2×(BL+CM)×LM=1/2×(8+6)×10=70cm2
Area(her.ABCDEF)=area(APF)+area(DEN)+area(ABL)+area(CMD)+area(Trap.PNEF)+area(Trap.LMCB)
=24+30+32+9+100+70
=265cm2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trapezium
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon