Find the area of pentagon ABCDE in which BL⊥AC, DM⊥AC and EN⊥AC such that AC=18 cm, AM=14 cm, AN=6 cm, BL=4 cm, DM=12 cm and EN=9 cm.
Given: BL⊥AC, DM⊥AC, and EN⊥AC such that AC=18 cm, AM=14 cm, AN=6 cm, BL=4 cm, DM=12 cm and EN=9 cm.
Area of triangle =12× base × height
Area of trapezium =12× (Sum of parallel sides) × height
Area of pentagon ABCDE = Area of △AEN + Area of trapezium EDMN + Area of △DMC+Area of △ACB
=[12×AN×EN]+[12×(EN+DM)×NM]+[12×MC×DM]+[12×AC×BL]
=[12×AN×EN]+[12×(EN+DM)×(AM−AN)]+[12×(AC−AM)×DM]+[12×AC×BL]
=12×6×9+12×(9+12)×(14−6)+12×(18−14)×12+12×18×4cm2
=27+84+24+36 cm2
=171 cm2
Hence, the area of the given pentagon is 171 cm2.