2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Find the area...
Question
Find the area of region bounded by the triangle whose vertices are
(
−
1
,
1
)
,
(
0
,
5
)
and
(
3
,
2
)
, using integration.
Open in App
Solution
Let we have the vertices of
△
A
B
C
as
A
(
−
1
,
1
)
,
B
(
0
,
5
)
and
C
(
3
,
2
)
.
∴
Equation of
A
B
is
y
−
1
=
(
5
−
1
0
+
1
)
(
x
+
1
)
⇒
y
−
1
=
4
x
+
4
⇒
y
=
4
x
+
5
.
.
.
.
(
i
)
And equation of
B
C
is
y
−
5
=
(
2
−
5
3
−
0
)
(
x
−
0
)
⇒
y
−
5
=
−
3
3
(
x
)
⇒
y
=
5
−
x
.
.
.
.
(
i
i
)
Similarly, equation of
A
C
is
y
−
1
=
(
2
−
1
3
+
1
)
(
x
+
1
)
⇒
y
−
1
=
1
4
(
x
+
1
)
⇒
4
y
=
x
+
5
.
.
.
.
(
i
i
i
)
∴
Area of shaded region
=
∫
0
−
1
(
y
1
−
y
2
)
d
x
+
∫
3
0
(
y
1
−
y
2
)
d
x
=
∫
0
−
1
[
4
x
+
5
−
x
+
5
4
]
d
x
+
∫
3
0
[
5
−
x
−
x
+
5
4
]
d
x
=
[
4
x
2
2
+
5
x
−
x
2
8
−
5
x
4
]
0
−
1
+
[
5
x
−
x
2
2
−
x
2
8
−
5
x
4
]
3
0
=
[
0
−
(
4
.
1
2
+
5
(
−
1
)
−
1
8
+
5
$
)
]
+
[
(
15
−
9
2
−
9
8
−
15
4
)
−
0
]
=
[
−
2
+
5
+
1
8
−
5
4
+
15
−
9
2
−
9
8
−
15
4
]
=
18
+
(
1
−
10
−
36
−
9
−
30
8
)
=
18
+
(
−
84
8
)
=
18
−
21
2
=
15
2
s
q
u
n
i
t
s
.
Suggest Corrections
0
Similar questions
Q.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.