1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Find the area...
Question
Find the area of region:
(
x
,
y
)
:
x
2
+
y
2
≤
1
,
≤
x
+
y
2
Open in App
Solution
G
i
v
e
n
,
x
2
+
y
2
≤
1
,
a
n
d
x
+
y
2
=
2
x
+
y
≥
2
,
∴
y
=
2
−
2
x
t
h
e
n
,
x
2
+
[
2
(
1
−
x
)
]
2
=
1
x
2
+
4
(
1
+
x
2
−
2
x
)
=
1
x
2
+
4
+
4
x
2
−
8
x
−
1
=
0
5
x
2
−
8
x
+
3
=
0
5
x
2
−
5
x
−
3
x
+
3
=
0
(
5
x
−
3
)
(
x
−
1
)
=
0
⇒
x
=
3
5
,
x
=
1
a
n
d
y
=
2
−
2
(
3
5
)
=
4
5
N
o
w
A
r
e
a
o
f
r
e
g
i
o
n
−
∫
1
3
5
y
.
d
y
−
1
2
(
1
−
3
5
)
×
4
5
∫
1
3
5
√
1
−
x
2
.
d
x
−
4
5
[
∫
√
a
2
−
x
2
d
x
=
a
2
2
tan
−
1
x
√
a
2
−
x
2
+
x
2
√
a
2
−
x
2
[
1
2
tan
−
1
x
√
1
−
x
2
+
x
2
√
1
−
x
]
3
5
1
−
4
5
[
1
2
×
π
2
−
1
2
tan
−
1
3
5
√
1
−
9
25
−
3
5
2
√
1
−
9
25
]
−
4
5
[
π
4
−
1
2
tan
−
1
3
4
−
3
5
×
2
×
4
5
]
−
4
25
[
π
4
−
1
2
tan
−
1
3
4
−
6
25
]
−
4
25
∴
π
4
−
1
2
tan
−
1
3
4
−
2
5
So, that the Area of region is
π
4
−
1
2
tan
−
1
3
4
−
2
5
.
Suggest Corrections
0
Similar questions
Q.
Find the area of the region
{
(
x
,
y
)
:
x
2
+
y
2
≤
1
≤
x
+
y
}
Q.
Find the area of the region
{
(
x
,
y
)
:
x
2
+
y
2
≤
4
,
x
+
y
≥
2
}
.
Q.
The area of the region
[
(
x
,
y
)
:
x
2
+
y
2
≤
1
≤
x
+
y
]
is;
Q.
Using integration find the area of the region
{
(
x
,
y
)
:
x
2
+
y
2
≤
2
a
x
,
y
2
≥
a
x
,
x
≥
0
,
y
≥
0
}
Q.
Area of the region bounded by
[
(
x
,
y
)
:
x
2
+
y
2
≤
1
≤
x
+
y
]
is equal to
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Area under the Curve
MATHEMATICS
Watch in App
Explore more
Area between Two Curves
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app