Find the area of the circle 4x2+4y2=9 which is interior to the parabola x2=4y
Given, circle is 4x2+4y2=9 and the given parabola is x2=4y. The two curves meet where
4(4y)+4y2=9⇒4y2+16y−9=0⇒y=−16±√256+1442×4=−16±√4008=−16±208=12,−92
But y > 0, therefore the two curves meet when y=12.
i.e., when x2=4×12=2, i.e., when x=±√2.
∴ Required area (shown in shaded region)
=2∫√20(y2−y1)dx=2{∫√20√9−4x24dx−∫√20x24dx}=2∫√20√(32)2−x2dx−24[x33]√20
=2[x2√(32)2−x2+(32)22sin−1(x32)]√20−16[(√2)3−0]=[x√94−x2+94sin−1(2x3)]√20−2√26=[√2√94−2+94sin−1(2√23)]−(0−0)−2√26=√22+94sin−1(2√23)−2√26=(√22−√23)+94sin−1(2√23)=√26+94sin−1(2√23) sq unit