12.2(PD)(OA−OD) fig(a) Assumption of the ellipse as according to given data.
(bsinθ)[a−acosθ]______eq(1) p=[acosθ,bsinθ]∵ it is a vertex of an ellipse.
eq(1)[∵ from the figure configuration] Q=[acosθ,−bsinθ]∵ it is perpendicular to the ellipse
⇒absinθ−absinθcosθ⇔ab[sinθ−sinθcosθ]
Now , by multiplying and dividing by 2 we get,
△APQ=ab2[2sinθ−2sinθcosθ]
△APQ⇒ab2[2sinθ−sin2θ]____eq(2)
by differentiating eq(2) we get , d△dθ=0
⇒ab2[ddθ[2sinθ]−ddθ[sin2θ]]
⇒ab2[2cosθ−2cos2θ]=0
⇒[2cosθ−2cosθ]=0 [∵cos2 θ=2cos2θ−1]
⇒2cosθ−2[2cos2θ−1]=0
⇒2[cosθ−[2cos2θ−1]]=0
⇒cosθ−2cos2θ+1=0
−[2cos2θ−cosθ−1]=0
⇒2cos2θ−cosθ−1=0 by factorization we get,
2cos2θ−2cosθ+cosθ−1=0
2cosθ[cosθ−1]+1[cosθ−1]=0
⇒(2cosθ+1)(cosθ−1)=0 (thus factors obtained)
⇒cosθ=−12;cosθ=1
for cosθ=−12;θ=2π3θ>0 this can be taken.
for cosθ=1;θ=0 θ≠0this condition cant be taken
So, we get
⇒cosθ=−12⇒θ=2π3 [∵ maximum value of θ is 2π3]
Now , let us find the Area for ab2[2sinθ−2sinθcosθ]
for θ=2π3
Area =ab2[2sin[2π3]]−[2sin2π3]cos[2π3]
⇒ab2×2[sin[2π3]−sin[2π3]cos[2π3]]
⇒ab[√32−√32[−12]]⇒ab[√32+√34]
⇒ab[2√3+√34]⇒ab[2√34]
∴Area=3√3ab4 is the maximum concidence of major axis.