Let (acosθ,bsinθ) be one of the vertices of the rectangle.
Hence the length=2acosθ and the width=2bsinθ
⇒Area of the rectangleA=2acosθ×2bsinθ=4absinθcosθ=2absin2θ
A′=2ab×2cos2θ
For maximum or minimum values of A
⇒A′=0
⇒4abcos2θ=0
⇒cos2θ=π2
⇒2θ=π2
⇒θ=π4
⇒A=2absin(2π4)
⇒A=2absin(π2)
∴A=2ab
Now A′′=−8absin2θ
Area is maximum when A=2ab