Given that , radius of circle (r ) = 14 cm
Angle of the corresponding sector. i.e central angle (θ)=60∘
Since, in ΔAOB, OA=OB=Radius of circle. i.e., ΔAOB is isosceles.
⇒∠OAB=∠OBA=θ
Now, in ΔOAB∠AOB+∠OAB+∠OBA=180∘
[ Since , sum of interior angles of any triangle is 180∘ ]
⇒60∘+θ+θ=180∘ [given,∠AOB=60∘]
⇒2θ=120∘
⇒θ=60∘
i.e ∠AOB=∠OBA=60∘=∠AOB
Since, all angles of ΔAOB are equal to 60∘ i.e ΔAOB is an equilateral triangle.
Also, OA=√34(side)2
=√34×(14)2 [∵Area of an equilateral triangle=√34(side)2]
√34×196=49√3 cm2
Area of sector OBAO =πr2360∘×θ
=227×14×14360×60∘
=22×2×146=22×143=3083cm2
∴ The area of the minor segment
= Area of sector OBAO - Area of the equilateral triangle
(3083−49√3)cm2