Find the area of the parallelogram whose adjacent sides are determined by the vectors →a=^i−^j+3^k and →b=2^i−7^j+^k.
Given →a=^i−^j+3^k and →b=2^i−7^j+^k
Area=12∣∣¯aׯb∣∣
¯aׯb=∣∣
∣
∣∣^i^j^k1−132−71∣∣
∣
∣∣
=20¯i+5¯j−5¯k
⇒∣∣¯aׯb∣∣=√(20)2+(5)2+(−5)2
=√400+25+25
=√450
∴∣∣¯aׯb∣∣=15√2
Area=12(15√2)=15√22square units,