Find the area of the quadrilateral ABCD whose vertices are respectively A (1, 1), B (7, –3) C (12, 2) and D (7,21). [4 MARKS]
Concept : 1 Mark
Application : 1 Mark
Calculation : 2 Marks
Area of quadrilateral ABCD=|Area of ΔABC|+|Area of ΔACD|
We have,
∴ Area of ΔABC=12|(1×−3+7×2+12×1)−(7×1+12×(−3)+1×2)|
⇒ΔABC=12|(−3+14+12)−(7−36+2)|
⇒ΔABC=12|23+27|=25sq.units
Also, we have
∴ Area of ΔACD=12|(1×2+12×21+7×1)−(12×1+7×2+1×21)|
⇒ΔACD=12|(2+252+7)−(12+14+21)|
⇒ΔACD=12|261−47|=107sq.units
∴ Area of quadrilateral ABCD = 25 + 107 = 132 sq. units